
STL4LN80K5

N-channel 800 V, 2.1 Ω typ., 3 A MDmesh[™] K5 Power MOSFET in a PowerFLAT[™] 5x6 VHV package

Datasheet - preliminary data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STL4LN80K5	800 V	2.6 Ω	3 A

- Industry's lowest R_{DS(on)} * area
- Industry's best FoM (figure of merit)
- Ultra low-gate charge
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STL4LN80K5	4LN80K5	PowerFLAT™ 5x6 VHV	Tape and reel

DocID027815 Rev 1

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
3	Test cir	cuits	6
4	Packag	e information	7
	4.1	PowerFLAT™ 5x6 VHV package information	8
	4.2	PowerFLAT™ 5x6 packing information	11
5	Revisio	n history	13

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 30	V
Ι _D	Drain current (continuous) at T_c = 25 °C	3	А
Ι _D	Drain current (continuous) at T _c = 100 °C	1.9	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	12	А
P _{TOT}	Total dissipation at T_C = 25 °C	38	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
Tj	Operating junction temperature	55 to 150	°C
T _{stg}	Storage temperature	- 55 to 150	U U

Notes:

⁽¹⁾Pulse width limited by safe operating area

 $^{(2)}I_{SD} \leq$ 3 A, dv/dt \leq 100 A/µs; V_DS peak < V_{(BR)DSS}

 $^{(3)}V_{DS} \le 640 \text{ V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	3.3	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	59	°C/W

Notes:

 $^{(1)}\!When$ mounted on FR-4 board of 1 inch², 2 oz Cu

Table 4: Avalanche characteristics

Symbol	Parameter		Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by Tjmax)	TBD	А
E _{AS}	Single pulse avalanche energy (starting Tj = 25 °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	TBD	mJ

2 Electrical characteristics

 $T_{\rm C}$ = 25 °C unless otherwise specified

Table 5: On/off-state						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_{D} = 1 mA	800			V
		V_{GS} = 0 V, V_{DS} = 800 V			1	μA
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 800 V T _C = 125 °C			50	μA
I _{GSS}	Gate body leakage current	V_{DS} = 0 V, V_{GS} = ±20 V			±10	μA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 100 μ A	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V_{GS} = 10 V, I _D = 1.2 A		2.1	2.6	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	110	-	pF
Coss	Output capacitance	V _{DS} = 100 V. f = 1 MHz. V _{GS} = 0 V	-	9.5	-	pF
C _{rss}	Reverse transfer capacitance	VDS 100 V, 1 1 Winz, VGS 0 V	-	0.4	-	pF
Coss(eq) ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 640 V, V_{GS} = 0 V	-	TBD	-	pF
R _g	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	18	-	Ω
Qg	Total gate charge	V _{DD} = 640 V, I _D = 2 A	-	4	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V,	-	TBD	-	nC
Q _{gd}	Gate-drain charge	see Figure 3: "Gate charge test circuit"	-	TBD	-	nC

Notes:

 $^{(1)}C_{oss\ eq}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 400 V, I _D = 1.6 A, R _G = 4.7 Ω	-	TBD	-	ns
tr	Rise time	$V_{GS} = 10 V$	-	TBD	-	ns
$t_{\text{d(off)}}$	Turn-off delay time	(See Figure 2: "Switching times test circuit for resistive load"and Figure 7: "Switching time waveform")	-	TBD	-	ns
t _f	Fall time		-	TBD	-	ns

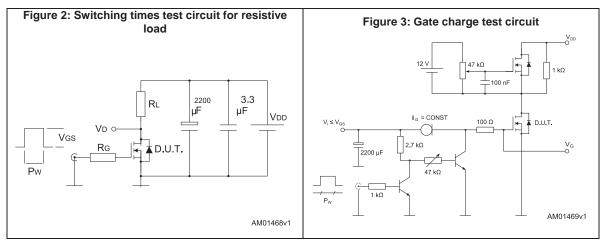
Table 7: Switching times

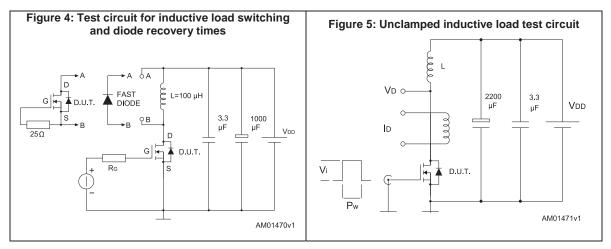
Table 8: Source-drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
I _{SD}	Source-drain current		-		3	А	
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		12	А	
$V_{SD}^{(2)}$	Forward on voltage	I _{SD} = 3 A, V _{GS} = 0 V	-		1.6	V	
t _{rr}	Reverse recovery time	I _{SD} = 3 A, di/dt = 100 A/μs,	-	TBD		ns	
Qrr	Reverse recovery charge	V _{DD} = 60 V, (see Figure 4: "Test circuit for inductive load switching and diode	-	TBD		μC	
I _{RRM}	Reverse recovery current	recovery times")		TBD		А	
trr	Reverse recovery time	I _{SD} = 3 A, di/dt = 100 A/μs,	-	TBD		ns	
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (Figure 4: "Test circuit for inductive load	-	TBD		μC	
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	TBD		А	

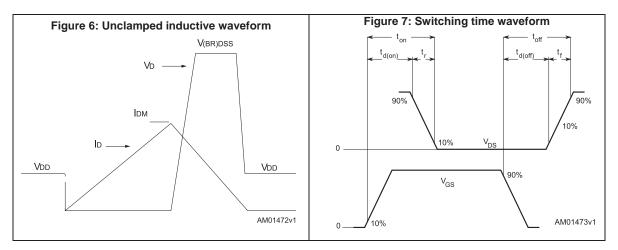
Notes:

⁽¹⁾Pulse width limited by safe operating area

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

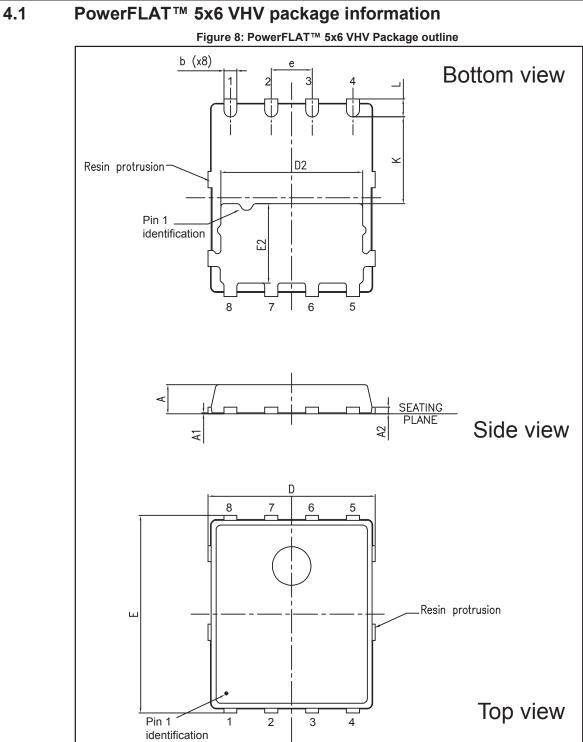

Table 9: Gate source-Zener diode


Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit.
V _{(BR)GS0}	Gate-source breakdown voltage	I_{GS} = ± 1mA, I_{D} = 0 A	30	-	-	V


The built-in back-to-back Zener diodes have specifically been designed to enhance the device's ESD capability. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

3 Test circuits

6/14

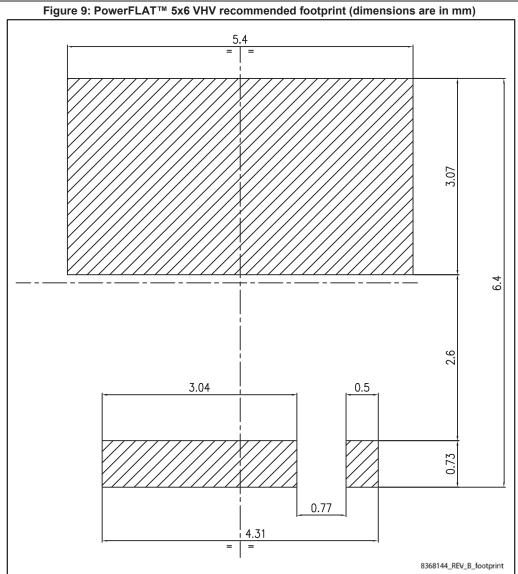

DocID027815 Rev 1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

8368144_REV_B

DocID027815 Rev 1


STL4LN80K5

Package information

K5			Package information					
Table 10: PowerFLAT™ 5x6 VHV package mechanical data								
Dim		mm						
Dim.	Min.	Тур.	Max.					
A	0.80		1.00					
A1	0.02		0.05					
A2		0.25						
b	0.30		0.50					
D	5.00	5.20	5.40					
E	5.95	6.15	6.35					
D2	4.30	4.40	4.50					
E2	2.40	2.50	2.60					
е		1.27						
L	0.50	0.55	0.60					
К	2.60	2.70	2.80					

Package information

4.2 PowerFLAT[™] 5x6 packing information

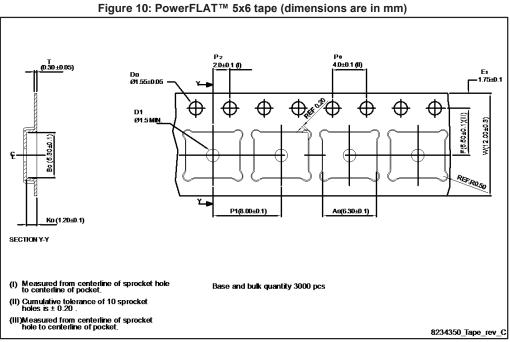
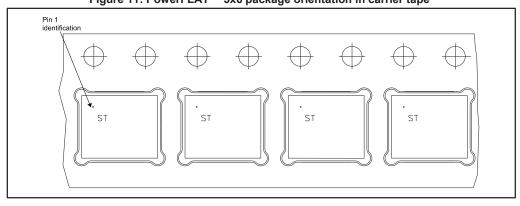
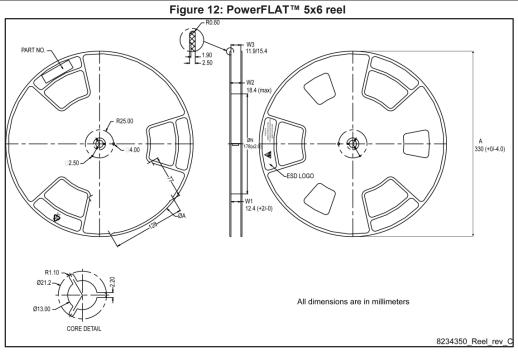




Figure 11: PowerFLAT™ 5x6 package orientation in carrier tape

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
29-May-2015	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

