

P320h Half-Height and Half-Length PCIe NAND Flash SSD

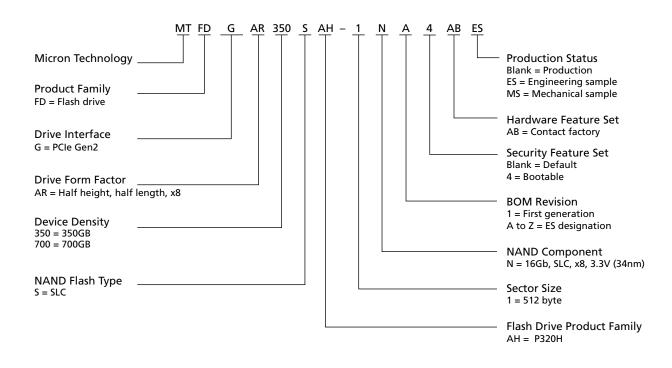
MTFDGARxxxSAH-1Nxxx

Features

- Micron[®] SLC NAND Flash (34nm)
- ONFI 2.1-compliant Flash Interface
- PCIe Gen2 x8 host interface
- Capacity:¹ 350GB, 700GB
- Endurance (total bytes written)^{2, 3}
 - 350GB: 25PB (4KB random write), 50PB (128KB sequential write)
 - 700GB: 50PB (4KB random write), 100PB (128KB sequential write)
- Temperature
 - Operating: 0°C to +85°C⁴
 - Storage (in system): 0° C to $+40^{\circ}$ C⁵
 - Storage (on shelf): -40° C to $+85^{\circ}$ C⁵
 - Temperature throttling support
- ATA modes supported
 - PIO modes 3 and 4 $\,$
 - Multiword DMA modes 0, 1, 2
 - Ultra DMA modes 0, 1, 2, 3, 4, 5, 6
 - ATA8-ACS2 command set support
 - ATA security feature command set and password login support
- Industry-standard 512-byte sector size support
- Full end-to-end data protection
- · Native command queuing up to 256 commands
- Bootable⁶
- Power: 25W RMS
- Random read/write (steady state) performance at 25W⁷
 - Random read: Up to 785,000 IOPS (4KB)
 - Random write: Up to 205,000 IOPS (4KB)
- Sequential read/write (steady state) performance at $25W^7$
 - Sequential read: Up to 3.2 GB/s (128KB)
 - Sequential write: Up to 1.9 GB/s (128KB)
- Latency (queue depth = 1)⁷
 - − READ latency: \leq 47µs
 - WRITE latency: $\leq 311 \mu s$ (nonposted)
- Custom drivers
 - Windows Server 2012 R2 (x86-64), Hyper-V (x86-64)
 - Windows Server 2012 (x86-64), Hyper-V (x86-64)

- Windows Server 2008 R2 SP1 (x86-64), Hyper-V (x86-64)
- Windows 8, 8.1 (x86-64 and x86)
- Windows 7 (x86-64 and x86)
- RHEL 5.5–5.10, 6.0–6.5, 7 (x86-64)
- SLES 11 SP1, SP2, SP3 (x86-64)
- VMware 5.0, 5.1 (x86-64)
- VMware 5.5 (inbox driver)
- Citrix XenServer 6.0.2, 6.1, 6.2
- Ubuntu 12.04-12.04.4, 14.04 LTS Server (64-bit)
- Reliability
 - MTTF: 2 million hours
 - Static and dynamic wear leveling
 - Field-upgradable firmware
 - Uncorrectable bit error rate (UBER): <1 sector per 10¹⁷ bits read
- Micron RAIN (redundant array of independent NAND) technology
- SMART command set support
- On-chip temperature monitoring
- Mechanical/electrical
 - 68.90mm x 167.65mm x 18.71mm
 - PCIe-compliant, x8 lane PCB connector
 - 12V power (±8%)
 - Weight: 350GB 127.2g; 700GB 135.3g
- Shock: 400g at 2ms
- Vibration: 3.1 grms 5–500Hz at 30 min/axis
- RoHS-compliant
 - Notes: 1. User capacity: 1GB = 1 billion bytes.
 - 2. Lifetime endurance is measured not in years, but in the number of bytes that can be written to the device.
 - 3. Workloads are 100% writes.
 - 4. Operating temperature is the drive case temperature as measured by the SMART temperature attribute.
 - 5. Assumes system is powered off and ready to be powered on.
 - 6. Bootable option determined by part number; see Part Numbering Information (page 2). Boot ability may not be compatible on some systems.
 - 7. Values vary by capacity. See Performance Specifications (page 4) for details.

PDF: 09005aef848cbdf4 realssd_p320h_hhhl_distribution.pdf - Rev. V 8/2014 EN 1

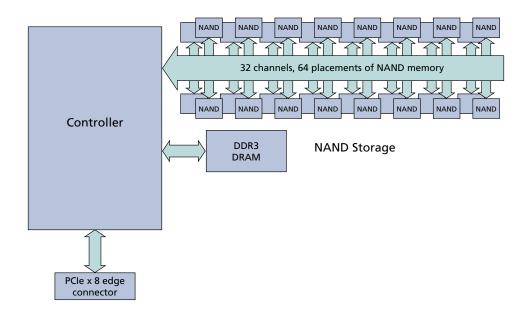

Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved.

Part Numbering Information

The Micron[®] P320h SSD is available in different configurations and densities. Visit www.micron.com for a list of valid part numbers.

Figure 1: Part Number Chart

Warranty: Contact your Micron sales representative for further information regarding the product, including product warranties.



General Description

Micron's P320h solid state drive (SSD) is targeted at applications that require high performance and enterprise-class storage reliability. The P320h delivers extremely high IOPS performance due to its ability to support up to 256 outstanding commands while ensuring full end-to-end data protection.

The P320h comes in a half-height, half-length (HHHL) form factor and uses a second-generation (Gen2) PCIe x8 lane interface on the host side and 32 ONFI 2.1-compliant channels on the Flash side.

Figure 2: Functional Block Diagram

Architecture

The single-chip, Micron-developed ASIC controller, along with the host and Flash interfaces, provide an embedded ATA host bus adapter, a host/Flash translation layer, Flash maintenance, channel control, and Flash RAID (RAIN) protection.

Flash endurance and reliability are optimized through the Flash maintenance features, including static and dynamic wear leveling and RAIN protection. Most of these functions are implemented directly within the controller hardware to optimize performance. The device is shipped in the configurations shown below.

Table 1: P320h HHHL Configurations

User Capacity	NAND Flash Process	NAND Flash Density	Package Count	Die per BGA Package
350GB	34nm	16Gb	64	4
700GB	34nm	16Gb	64	8

Performance Specifications

Table 2: Performance Specifications

Specification	350GB	700GB
Sequential read (up to)	3.2 GB/s	3.2 GB/s
Sequential write (up to)	1.9 GB/s	1.9 GB/s
Random read (up to)	785,000 IOPS	785,000 IOPS
Random write (up to)	175,000 IOPS	205,000 IOPS
READ latency	<u>≤</u> 47µs	<u>≤</u> 47µs
WRITE latency	≤311µs (nonposted)	≤311µs (nonposted)

Notes: 1. Transient peaks above 25W are possible under heavy write workloads. 10ms RMS average measurements taken.

- 2. Drive is erased and filled with zeroes to achieve preconditioned state .
- 3. 128KB transfers are used for sequential read/write values; 4KB transfers are used for random read/write values.
- 4. I/O performance numbers are measured in steady state using FIO with a preconditioned drive under RHEL 6.3 with a queue depth of 256 and with raw device access on systems with a single Intel Xeon E5-2667 2.90 GHz processor with 6 cores, 12 logical and hyper-threading enabled.
- 5. Steady state performance is defined as conforming to the SNIA V1.0 Performance Test Specification.
- 6. Performance numbers derived from tests at room temperature.
- 7. Latency performance numbers are measured using FIO with queue depth 1, random transfer, 512-byte transfer size for READ latency, 4KB transfer size for WRITE latency.
- 8. Performance numbers are notated in base 10.

Functional Description

Data Retention

Data retention refers to the SSD's media (NAND Flash) capability to retain programmed data when the SSD is powered off. The two primary factors that influence data retention are degree of use (the number of PROGRAM/ERASE cycles on the media) and temperature.

Degree of use: As NAND Flash is used (programmed and erased), its natural ability to retain charge (programmed data) decreases. When the SSD ships from the factory, it is typically able to retain user data for up to 10 years when powered off. As the SSD is used, this typically decreases to one year.

Temperature: As the temperature increases, data retention decreases.

Note: All data retention related to values in the data sheet are with the SSD powered off. When the SSD is powered on, data retention is expected to exceed these limits. Micron SSD data retention with power removed is one year at 40°C (MAX).

Micron RAIN Technology

Redundant array of independent NAND (RAIN) is a technology developed by Micron designed to extend the lifespan of the P320h.

Residing in the P320h ASIC controller, RAIN is similar to redundant array of independent disks (RAID) technology, but instead of grouping and striping disks, RAIN groups and stripes storage elements on the SSD across multiple channels, generating and storing parity data along with user data (one page of parity for every seven pages of user data). This data structure (user data plus parity) enables complete, transparent data recovery if a single storage element (NAND page, block, or die) fails. If a failure occurs, the P320h automatically detects it and transparently rebuilds the data. During this RAIN rebuild process, the drive's performance is reduced temporarily but will recover after the rebuild process completes.

Wear Leveling

Wear leveling is a technique that spreads Flash block use over the entire memory array to equalize the PROGRAM/ERASE cycles on all blocks in the array. This helps to enhance the lifespan of the SSD. The P320h supports both static and dynamic wear leveling.

Static wear leveling considers all Flash blocks in the SSD regardless of data content or access and maintains an even level of wear across the drive. Dynamic wear leveling monitors available free space on the drive and dynamically moves data between Flash blocks to equalize wear on each block. Both techniques are used together within the controller to optimally balance the wear profile of the Flash array along with the drive's lifespan.

SMART Attribute Summary

Table 3: SMART Command Reference¹

Attribute ID	Hex ID	Name	SMART Trip	Description
9	0x09	Power-on hours count	No	Lifetime powered-on hours, from the time the device leaves the factory
12	0x0C	Power cycle count	No	Count of power cycles
170	0xAA	New failing block count	No	Grown defects
171	0xAB	Program fail count	No	Number of NAND program status failures
172	0xAC	Erase fail count	No	Number of NAND erase status failures
174	0xAE	Unexpected power loss count	No	Number of unexpected power-loss occurrences
187	0xBB	Reported uncorrecta- ble errors count	No	Number of ECC correction failures
188	0xBC	Command timeout count	No	Number of command timeouts, defined by an active command being interrupted by a HRESET, COMRESET, SRST, or other command
194	0xC2	Temperature	No	The on-die temperature sensor within the con- troller ASIC in degrees C, capturing the lifetime high and low temperatures measured
202	0xCA	Percentage of the rat- ed lifetime used	No	Cumulative erase count / lifetime erase count as expressed as a percent. Lifetime erase count is the total number of available blocks * block en- durance for the flash technology, read directly from the NAND device.
232	0xE8	Available reserved space	No	Percentage of spare blocks remaining Spare block count
241	0xF1	Power-on (minutes)	No	Lifetime power-on time in minutes
242	0xF2	Write protect progress	No	Progress toward WRITE PROTECT mode: reports 100% when the drive becomes read only

Note: 1. Attribute/Hex IDs are noted for distribution product. Specific OEMs may have different ID values, but the same list of SMART commands applies.

Logical Block Address Configuration

The number of logical block addresses (LBAs) reported by the P320h ensures sufficient storage space for the specified capacity. Standard LBA settings based on the IDEMA standard (LBA1-02) are shown below.

Table 4: Standard LBA Settings

	Total LBA		Мах	User Available	
Capacity	Decimal	Hexadecimal	Decimal	Hexadecimal	Bytes (Unformat- ted)
350GB	683,747,568	28C128F0	683,747,567	28C128EF	350,078,754,816
700GB	1,367,473,968	5181FF30	1,367,473,967	5181FF2F	700,146,671,616

Note: 1. Note: 1GB = 1 billion bytes; user capacity.

Physical Configuration

Table 5: Nominal Dimensions and Weight

Specification	Value	Unit
Height	68.90	mm
Width	18.71	mm
Length	167.65	mm
Unit weight (HH bracket)	350GB: 127.2 700GB: 135.3	g
Unit weight (FH bracket)	350GB: 132.3 700GB: 140.4	g

Interface Connectors

The host interface connector conforms to the PCIe Electromechanical Specification V2.0, section 5, Table 5-1. It is an eight-lane, gold-finger connector with 1mm pitch spacing.

A mechanical indent is used to separate the PCIe power pins from the differential signal contacts. The pins are numbered below in ascending order from left to right. Side B refers to component side and Side A refers to the solder side.

Table 6: PCIe Interface Connector Pin Assignments

Pin	Side B			Side A
Number	Name	Description	Name	Description
1	+12V	12V power	PRSNT1#	Hot Plug Presence Detect
2	+12V	12V power	+12V	12V power
3	+12V	12V power	+12V	12V power
4	GND	Ground	GND	Ground
5	SMCLK	DNU	JTAG2	DNU
6	SMDAT	DNU	JTAG3	DNU
7	GND	Ground	JTAG4	DNU
8	+3.3V	DNU	JTAG5	DNU
9	JTAG1	DNU	+3.3V	DNU
10	3.3Vaux	DNU	+3.3V	DNU
11	WAKE#	DNU	PERST#	PCIe Reset
Mechanical Key	/			
12	RSVD	Reserved	GND	Ground
13	GND	Ground	REFCLK+	PCIe REFCLK p
14	PETp0	PCIe TX Lane 0 p	REFCLK-	PCIe REFCLK n
15	PETn0	PCIe TX Lane 0 n	GND	Ground
16	GND	Ground	PERp0	PCle RX Lane 0 p
17	PRSNT2#	Hot Plug Presence Detect	PERn0	PCle RX Lane 0 n
18	GND	Ground	GND	Ground
19	PETp1	PCIe TX Lane 1 p	RSVD	Reserved
20	PETn1	PCIe TX Lane 1 n	GND	Ground
21	GND	Ground	PERp1	PCle RX Lane 1 p
22	GND	Ground	PERn1	PCle RX Lane 1 n
23	PETp2	PCIe TX Lane 2 p	GND	Ground
24	PETn2	PCIe TX Lane 2 n	GND	Ground
25	GND	Ground	PERp2	PCle RX Lane 2 p
26	GND	Ground	PERn2	PCle RX Lane 2 n
27	PETp3	PCIe TX Lane 3 p	GND	Ground
28	PETn3	PCIe TX Lane 3 p	GND	Ground
29	GND	Ground	PERp3	PCle RX Lane 3 p

Pin	Side B			Side A
Number	Name	Description	Name	Description
30	RSVD	Reserved	PERn3	PCle RX Lane 3 n
31	PRSNT2#	Hot Plug Presence Detect	GND	Ground
32	GND	Ground	RSVD	Reserved
33	PETp4	PCle TX Lane 4 p	RSVD	Reserved
34	PETn4	PCle TX Lane 4 n	GND	Ground
35	GND	Ground	PERp4	PCle RX Lane 4 p
36	GND	Ground	PERn4	PCle RX Lane 4 n
37	PETp5	PCIe TX Lane 5 p	GND	Ground
38	PETn5	PCle TX Lane 5 n	GND	Ground
39	GND	Ground	PERp5	PCle RX Lane 5 p
40	GND	Ground	PERn5	PCle RX Lane 5 n
41	PETp6	PCle TX Lane 6 p	GND	Ground
42	PETn6	PCle TX Lane 6 n	GND	Ground
43	GND	Ground	PERp6	PCle RX Lane 6 p
44	GND	Ground	PERn6	PCle RX Lane 6 n
45	PETp7	PCIe TX Lane 7 p	GND	Ground
46	PETn7	PCIe TX Lane 7 n	GND	Ground
47	GND	Ground	PERp7	PCle RX Lane 7 p
48	PRSNT2#	Hot Plug Presence Detect	PERn7	PCle RX Lane 7 n
49	GND	Ground	GND	Ground

Table 6: PCIe Interface Connector Pin Assignments (Continued)

PCIe Header

Figure 3: HHHL PCIe Header

31					Byte offset)
Device ID = 5150h			Vendor ID = 1344h		
	Statu	JS	Command		04h
	С	lass code = 018000h		Revision ID = 03h	08h
	BIST	Header type = 00h	Master latency timer	Cache line size	0Ch
~				~	
Subsystem ID = 12xxh (350GB) Subsystem ID = 22xxh (700GB)			Subsystem vend	or ID = 1344h	2Ch

Note: 1. Standard Distribution Subsystem ID is 1200h for 350GB and 2200h for 700GB. A nonzero value for xx indicates an OEM product.

Commands

Table 7: Supported ATA Command Set

See ATA-8 ACS-2 specification for command details

Commands	ATA Protocol	CMD Code	Feature Codes
CHECK POWER MODE	ND	0xE5	-
DEVICE CONFIGURATION FREEZE LOCK	ND	0xB1	0xC1
DEVICE CONFIGURATION IDENTIFY	PI	0xB1	0xC2
DEVICE CONFIGURATION RESTORE	ND	0xB1	0xC0
DEVICE CONFIGURATION SET	РО	0xB1	0xC3
DOWNLOAD MICROCODE	РО	0x92	-
EXECUTE DEVICE DIAGNOSTIC	DD	0x90	-
FLUSH CACHE	ND	0xE7	-
FLUSH CACHE EXT	ND	0xEA	-
IDENTIFY DEVICE	PI	0xEC	-
IDLE	ND	0xE3	-
IDLE IMMEDIATE	ND	0xE1	-
INITIALIZE DEVICE PARAMETERS	ND	0x91	-
READ BUFFER	PI	0xE4	-
READ DMA	DM	0xC8	-
READ DMA WO RETRIES	DM	0xC9	-
READ DMA EXT	PI	0x25	-
READ FPMDA QUEUED	NCQ	0x60	-
READ LOG EXT	PI	0x2F	-
READ MULTIPLE	PI	0xC4	-
READ MULTIPLE EXT	PI	0x29	-
READ NATIVE MAX ADDRESS	ND	0xF8	-
READ NATIVE MAX ADDRESS EXT	ND	0x27	-
READ SECTORS	PI	0x20	-
READ SECTORS WO RETRIES	PI	0x21	-
READ SECTORS EXT	PI	0x24	-
READ VERIFY SECTORS	ND	0x40	-
READ VERIFY SECTORS WO RETRIES	ND	0x41	-
READ VERIFY SECTOR EXT	ND	0x42	-
RECALIBRATE	ND	0x1x	-
SECURITY DISABLE PASSWORD	PO	0xF6	-
SECURITY ERASE PREPARE	ND	0xF3	-
SECURITY ERASE UNIT	PO	0xF4	-
SECURITY FREEZE LOCK	ND	0xF5	-
SECURITY SET PASSWORD	PO	0xF1	-
SECURITY UNLOCK	РО	0xF2	-

Table 7: Supported ATA Command Set (Continued)

See ATA-8 ACS-2 specification for command details

Commands	ATA Protocol	CMD Code	Feature Codes
SEEK	ND	0x7x	-
SET FEATURES	ND	0xEF	VARIOUS
SET MAX ADDRESS	ND	0xF9	0x00
SET NATIVE MAX ADDRESS EXT	ND	0x37	-
SET MAX SET PASSWORD	ND	0xF9	0x01
SET MAX LOCK	ND	0xF9	0x02
SET MAX FREEZE LOCK	ND	0xF9	0x04
SET MAX UNLOCK	ND	0xF9	0x03
SET MULTIPLE MODE	ND	0xC6	-
SLEEP	ND	0xE6	-
SMART DISABLE OPERATIONS	ND	0xB0	0xD9
SMART ENABLE/DISABLE AUTOSAVE	ND	0xB0	0xD2
SMART ENABLE OPERATIONS	ND	0xB0	0xD8
SMART EXECUTE OFF-LINE IMMEDIATE	ND	0xB0	0xD4
SMART READ DATA / READ ATTRIBUTE VALUES	PI	0xB0	0xD0
SMART READ LOG	PI	0xB0	0xD5
SMART RETURN STATUS	ND	0xB0	0xDA
SMART WRITE LOG	PO	0xB0	0xD6
SMART READ ATTRIBUTE/WARRANTY THRESHOLDS	PI	0xB0	0xD1
STANDBY	ND	0xE2	-
STANDBY IMMEDIATE	ND	0xE0	-
WRITE BUFFER	PO	0xE8	-
WRITE DMA	DM	0xCA	-
WRITE DMA WO RETRIES	DM	0xCB	-
WRITE DMA EXT	DM	0x35	-
WRITE DMA FUA EXT	DM	0x3D	-
WRITE FPDMA QUEUED	NCQ	0x61	-
WRITE LOG EXT	РО	0x3F	-
WRITE MULTIPLE	РО	0xC5	-
WRITE MULTIPLE EXT	РО	0x39	-
WRITE MULTIPLE FUA EXT	РО	0xCE	-
WRITE SECTORS	РО	0x30	-
WRITE SECTORS WO RETRIES	PO	0x31	-
WRITE SECTORS EXT	PO	0x34	_

Reliability

Micron's SSDs incorporate advanced technology for defect and error management. They use various combinations of hardware-based error correction algorithms and firmware-based static and dynamic wear-leveling algorithms.

Over the life of the SSD, uncorrectable errors may occur. An uncorrectable error is defined as data that is reported as successfully programmed to the SSD but when it is read out of the SSD, the data differs from what was programmed.

Table 8: Uncorrectable Bit Error Rate

Uncorrectable Bit Error Rate	Operation
1 sector per 10 ¹⁷ bits read	READ

Mean Time to Failure

The mean time to failure (MTTF) for the device can be predicted based on the component reliability data using the methods referenced in the Telcordia SR-322 reliability prediction procedures for electronic equipment.

Table 9: MTTF

Capacity	MTTF (Operating Hours)
350GB	2 million
700GB	2 11111011

Endurance

Endurance for the device can be predicted based on the usage conditions applied to the device, the internal NAND component PROGRAM/ERASE cycles, the write amplification factor, and the wear-leveling efficiency of the drive. The table below shows the drive lifetime for each SSD density based on predefined usage conditions. The SSD implements wear leveling in hardware to optimize performance and efficiency while maintaining Flash endurance.

Table 10: Drive Lifetime

Capacity	Workload	Total Bytes Written	Drive Fills Per Day	Retention
350GB	4KB random writes	25PB	39	1 year
	128KB sequential writes	50PB	78	1 year
700GB	4KB random writes	50PB	39	1 year
	128KB sequential writes	100PB	78	1 year

Electrical and Environmental Characteristics

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Table 11: Operating Voltage and Power

Electrical Characteristic	Value	
Voltage requirement	+12Vdc (±8%)	
Active power	25W RMS	
Standby power (idle)	10W	

Table 12: Environmental Conditions

Temperature and Airflow	Min	Max	Unit	Notes
Operating temperature (as indicated by SMART temper- ature)	0	85	°C	1
Operating ambient temperature	0	55	°C	2
Storage temperature (in system)	0	40	°C	3
Storage temperature (offline)	-40	85	°C	4
Operating airflow	1.0	-	m/s	5

Notes: 1. If SMART temperature exceeds 85°C, write performance is throttled.

2. Temperature of air impinging on the drive.

3. Assumes system is powered off and ready to be powered on.

4. Contact Micron for additional information.

5. Airflow must flow along the length of the drive, parallel to and through any cooling fins; 1.5m/s operating airflow is recommended.

Table 13: Shock and Vibration

Parameter/Condition	Specification	
Shock	400g at 2ms	
Vibration	3.1 grms 5–800Hz at 30 min/axis	

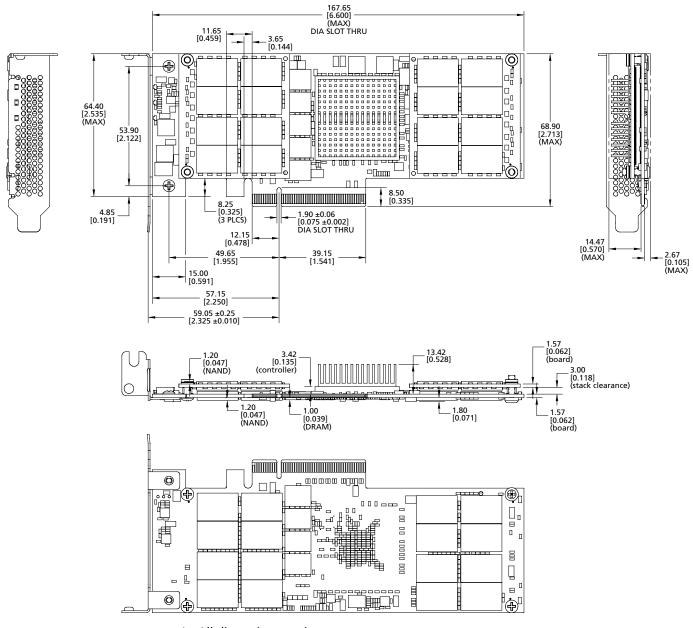
Compliance

The device complies with the following specifications:

- RoHS Restriction of Hazardous Substances
- China RoHS
- WEEE Waste Electric and Electronic Equipment
- Halogen Free meets IPC low-halogen requirements
- CE (Europe) EN55022/EN55024 (Class A)
- TUV (Germany) EN60950
- UL (US/Canada) EN60950
- FCC (US) 47CFR Part 15 Class A
- BSMI (Taiwan) CNS 13438 Class A
- VCCI (Japan) EN 55022/CISPR 22 Class A
- C-TICK (AUS/NZ) CISPR22
- ICES (Canada) CISPR22 Class A
- KC (Korea) EN55022/EN55024 Class A, KCC-REM-MU2-P320hHHHL

FCC Rules

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.


References

- PCI Express Base Specification V2.1
- PCI Express CEM Specification V2.0
- ATA8-ACS2 Specification
- IDEMA Specification
- Telcordia SR-322 Procedures
- SNIA Performance Test Specification V1.0

Drive Dimensions

Figure 4: Half-Height, Half-Length Dimensions

Notes: 1. All dimensions are in mm.

2. Board will have a x8 PCIe edge connector.

Revision History

Rev. V – 8/14	
	• Updated custom drivers status.
Rev. U – 7/14	
	Changed documentation status.
Rev. T – 7/14	
	• Updated custom drivers list.
Rev. S – 3/14	
	Updated Compliance section.
Rev. R – 2/14	
	Revised endurance, temperature, shock and vibration specifications.
	 Updated list of custom drivers.
	Updated Compliance section.
Rev. Q - 10/13	
	Updated temperature specification and note.
	Updated list of custom drivers.
Rev. P – 05/13	
	• Added VMware ESX 5.0, 5.1 to custom drivers in Features section.
	• Added viviwale ESA 5.0, 5.1 to custom drivers in reactives section.
Rev. O – 04/13	
	• Updated custom drivers in Features section.
Rev. N – 02/13	
Rev. 14 = 02/15	
	Updated Functional Description section.
Rev. M – 01/13	
	Added Bootable option to Features section.
Rev. L – 10/12	
	• Added Windows Server 2012 Hyper-V (x64) to Features section.
	• Added windows Server 2012 Hyper-V (x04) to reatures section.
Rev. K – 8/12	
	Added Performance Specifications section.
	Updated write latency value.
	 Changed footnotes and footnote numbering in Features section.

	Added SNIA Performance Test Specification to References section.
Rev. J – 5/12	
	Updated Features section.
	• Changedfour-lane, gold-finger connector toeight-lane, gold-finger connector in Interface Connectors section.
Rev. I – 4/12	
	• Removed reference to support for Open source GPL (Kernel Rev. 2.6.25+) from Fea- tures section.
Rev. H – 3/12	
	Revised specifications.
Rev. G – 1/12	
	Revised specifications.
Rev. E – 11/11	
	Removed FHHL information.
Rev. D – 11/11	
	• Revised operating temperature, maximum ratings, and performance data.
Rev. C – 10/11	
	• Inserted SMART table and a note after references section.
Rev. B – 08/11	
	Added half-height, half-length information.
Rev. A – 06/11	
	Initial release; Preliminary status.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000 www.micron.com/products/support Sales inquiries: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.

Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.